Mechanical R&D at Argonne Focus on TASD Design

Half-height mechanical prototype

- not instrumented-
 - TASD: alternate layers of horizontal and vertical extrusions
 - Off-the shelf commercial extrusions purchased by ANL for \$7k
 - Prototype: 4-layers deep
 - Extrusions will be sealed at both ends
 - Extrusions will be filled with water
- Goals
 - Complete the structure in December '04
 - Test assembly process
 - Test structural properties of prototype Jan-March'05
- Plans beyond March
 - Several possibilities

PVC Extrusions

- ANL purchased commercial extrusions from
 - Extrutech in Manitowoc, Wi
 - 34 cells (34" wide), 27 ft long
- Compare to NOvA Design

	ANL Prototype	TASD	Baseline
Height	8 m	17 m	14.5 m
Inner-wall thicknes	ss 0.8 mm	1.0 mm	1.0 mm
Outer-wall thickne	ss 1.6 mm	2.0 mm	1.5 mm
Cell dimensions	2.5 x 4.1 cm ²	3.9 x 4.5 cm ²	2.5 x 4.0 cm ²
Cell cross section	10 cm^2	17 cm^2	10cm^2
TiO ₂ content	8%	10-15%	10-15%

Half-Height Prototype

- Four Planes (2 X and 2 Y)
 - 27 ft (8m) high x 15 ft (4.5m) wide
- Planes assembled at floor level, horizontally
 - Assembly takes place on lifting fixture
- Planes are rotated up and secured against a book-end

Bookend and Lifting Fixture

Side View

Plane Assembly

Extrusions

- Attach end plugs and manifolds
 - end plugs and "crude" manifolds made at FNAL
 - Contain water and sustain pressure tests
- Assemble a "bi-plane" on the floor
 - 5 Y modules (27 ft long)
 - 9 X modules (15 ft long)
 - "Glue" extrusions together

Lifting Fixture: Artist's Conception

Inflatable Tubes Inserted in 8 m Unistrut Channels

Attach Layers to Book-end

- Spread "glue" over top bi-layer
- Rotate lifting fixture to the vertical
 - Special lifting fixture holds bi-plane flat against bookend: inflatable tubing
- Allow some (short) time to cure
- Rotate lifting fixture down to the floor
- Assemble another bi-plane
- Repeat the attachment procedure

Bookend and Lifting Fixture A Side View

The Assembly Process

What will we learn?

- Go beyond paper studies of assembly method
 - Already eliminated "piece-by-piece" method on paper
- Gain practical experience and new insights
 - Optimize assembly procedure
 - Relate this experience to other assembly methods
- Is this method of assembly practical?
 - Bi-plane assembly
 - Flatness
 - Time
 - Lifting fixture with hydraulic pressure
 - Flat enough?
 - Turnaround time
 - Labor
- Will this method work for a full-scale detector?

Mechanical Tests of Half-height Prototype

- Answer these kinds of questions
 - Is the structure stable?
 - How much support does it need?
 - Is there creep?
- Tests: After 4 layers are secured vertically
 - Fill extrusions with water
 - Define the procedure: for example, liquid level is ~same in all extrusions
 - All extrusions can be drained and re-filled for further testing
- Strain gauges will be located in strategic locations
- Seal air vents and pressurize extrusions to simulate hydraulic pressure (in verticals) of full-scale detector

Possibilities for future prototype work

- Some current suggestions are
 - Build an additional 10-20 layers
 - Optimize assembly methods
 - Test extended prototype for stability when filled with water
 - Insert fibers into some of the extrusions?
 - Tests of manifold/fiber optics system
 - Fill some extrusions with scintillator?.....
- We are open to ideas from the collaboration